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Chapter 1: Introduction 

The ability to produce fast and accurate voxelizations, as seen in fgure 1.1, is highly de-

sirable for many applications, such as intersection computation, hierarchy construction, 

ambient occlusion and global illumination. There have been many approaches to achiev-

ing such voxelizations. These balance tradeofs between accuracy, speed, and memory 

consumption. We make a distinction between requirements that are orthogonal to each 

other. For instance, binary voxelization vs. voxelization that requires blending at active 

voxels; naturally, binary voxelization has lower memory requirements, as it is sufcient 

to use a single bit to indicate whether a voxel is active. 

Another consideration is surface voxelization vs solid voxelization. Solid voxelization 

marks any voxel on or within a model as active (and thus requires watertight geometry), 

whereas surface voxelization considers only those voxels in contact with the surface of 

the model, this criteria can be further split by defning the separability requirement. 

A conservative voxelization marks any voxel that comes in contact with the surface as 

active, and is thus 26-separable, while a thin voxelization is 6-separable. 

Additionally, since voxelization discretizes a scene into regular volumetric elements, 

as voxel density increases, the memory requirements of maintaining such a dense data 

structure become prohibitive, as generally most of the scene consists of empty space. 

Figure 1.1: The XYZ RGB Asian Dragon voxelized at 1283 , 2563, and 5123 resolutions. 
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Many approaches attempt to mitigate these high memory requirements by constructing 

a sparse hierarchical voxel representation which retains voxel's regular size, but cluster 

similar regions (empty or solid) into a tree structure, typically an octree. 

Initially, we make a distinction between two primary voxelization approaches on 

the GPU; computational approaches that completely eschew the graphics pipeline like 

Schwarz and Seidel [14], Schwarz [13] and Pantaleoni [11], versus rasterization based 

approaches to voxelization. 

In this paper we take a hybrid approach to voxelization. While we still utilize the 

GPU as a massively parallel compute device, we do not abandon the standard graphics 

pipeline to do so. Instead, we build on its strengths, allowing it to perform the triangle-

fragment workload balancing that it does so well with rasterization, and applying this to 

voxelization. This frees us from having to delve into optimal tiling and triangle sorting 

strategies in order to balance an inherently unbalanced workload of non-uniform triangles. 

In this paper we touch upon many voxelization techniques. In chapter 2, we cover 

the relevant work in the feld. In chapter 3 we discuss frst our triangle-parallel and 

fragment-parallel approaches and how we combine them for our hybrid implementation. 

Additionally, we discuss several Voxel-List construction methods, and a method to cor-

rectly interpolate attributes using barycentric coordinates. This is followed by our results, 

chapter 4, a discussion of our fndings and potential future work, chapter 5, and our con-

clusions, chapter 6. 
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Chapter 2: Related Work 

2.1 Graphics Pipeline 

Approaches to voxelization take many forms, and must balance several properties. One 

of the earlier approaches to utilize the graphics pipeline, Fang and Chen [7] constructed 

a surface voxelization via rasterizing the geometry for each voxel slice while clamping 

the viewport to each slice. Li et al. [10] introduced "depth peeling" which reduced the 

number of rendering passes by capturing 1-level of surface depth complexity per render 

pass. These approaches tended to miss voxels, and often must be applied once along each 

orthogonal plane to capture missed geometry. Dong et al. [4] utilized binary encoding 

to store voxel occupancy in separate bits of multi-channel render targets, allowing them 

to process multiple voxel slices in a single rendering pass. This approach is sometimes 

referred to as a slicemap, Eisemann et al. [5]. 

Approaches exist, such as conservative voxelization by Zhang et al. [16], which employ 

the conservative rasterization technique of Hasselgren et al. [8]. This approach amplifed 

single triangles to potentially nine triangles by expanding triangle vertices to pixel sized 

squares and outputting the convex hull of the resultant geometry. Sintorn et al. [15] 

improved on this by ensuring that fewer triangles would be generated during triangle 

expansion, while Hertel et al. [9] found it was most efective to simply expand triangles 

by half the diagonal of a pixel and discard extra fragments in the pixel shader. 

Some voxelization techniques also target solid voxelization; generally, these must re-

strict their input geometry to closed, watertight models, and classify voxels as either 

interior or exterior. As surface geometry is voxelized, entire columns of voxels are set, 

fnal classifcation is based on the count, or parity, of the voxel, an odd value indicates 

a voxel as interior, while even indicates exterior. In GPU hardware this corresponds to 

applying a logical XOR which is supported by the frame bufer. Fang and Chen [7] pre-

sented such an approach using slice-wise rendering, while Eisemann et al. [6] developed 

a high-performance single pass approach. 

Most recently Crassin and Green [3] have released an approach that operates similarly 
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to the fragment-parallel component of our scheme, discussed in section 3.2, exploiting the 

recently exposed ability to perform random texture writes in OpenGL using the image 

API. By constructing an orthographic projection matrix per-triangle in the geometry 

shader, they were able to rely on the OpenGL rasterizer to voxelize their geometry. 

2.2 Computational Voxelization 

More recently, approaches have been developed which take an explicitly computational 

approach to voxelization without utilizing fxed function hardware. Schwarz and Sei-

del [14] implemented a triangle parallel voxelization approach in CUDA, which achieved 

accurate 6 and 26-separating binary voxelization into a sparse hierarchical octree. Pan-

taleoni's VoxelPipe [11] implementation took a similar approach while fully supporting a 

variety of render targets and robust blending support. Both approaches also employed a 

tile-based voxelization. 

Like the work of Schwarz and Seidel [14] our approach supports both conservative 

(26-separating) and thin (6-separating) voxelization. Separability (26 or 6) is a topolog-

ical property defned by Cohen-Or [2] that means no path of N-adjacent (26 or 6) voxels 

exists that connects a voxel on one side of the surface and a voxel on the other side. 

Two voxels are 26-adjacent if they share a common vertex, edge or face, and 6-adjacent 

if they share a face. Our ability to support multiple render targets and texture formats 

like Pantaleoni [11] is limited only by the restrictions present in the OpenGL image API. 
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Chapter 3: Voxelization 

Whereas previous techniques relied exclusively on the graphics pipeline, or rejected it 

completely for a computational approach, we demonstrate how to fnd a middle ground 

to apply the techniques of computational voxelization approaches within the framework 

of the graphics pipeline. First, however, we must introduce both the triangle-parallel 

(section 3.1) and fragment-parallel (section 3.2) techniques which make up the primary 

components of our hybrid approach (section 3.3). Both techniques employ the same 

3D extension of the Akenine-Moller [1] triangle/box overlap tests found in Schwarz and 

Seidel [14] and Pantaleoni [11]. These approaches difer from each other primarily in 

their factorization of the computational overlap testing, and the methods in which they 

try to achieve optimal parallelism. 

Triangle/Voxel Overlap We can consider the exercise of fnding an intersection 

between a triangle T (with vertices v0, v1, v2 and edges ei = v(i+1) mod 3 − vi) and a 

voxel p to be fundamentally an exercise in frst reducing the number of triangle voxel pairs 

to consider, and secondly an efort in reducing the computation required to confrm an 

intersection between a triangle and a voxel. Considering initially the potential intersection 

between a triangle and the set of all voxels, conceptually, the process is executed in the 

following order. 

1. Reduce the set of potential voxel intersections to only those that overlap the axis-

aligned bounding volume b of the triangle. 

2. Iterate over this reduced set of voxels (from bmin to bmax) and discard any that do 

not intersect the triangle's plane. 

3. If the triangle plane divides the voxels test all three of its 2D planar projections  
T XY ,T YZ ,T ZX to confrm overlap. 

The steps above rely heavily on point to plane, and point to line distance calculations. 

For instance, the plane overlap test relies on computing the signed distance to the plane 
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Figure 3.1: pmin and pmax for 26-separable voxelization on left, and for 6-separable 
voxelization on right. Note that for 6-separable voxelization we are actually testing for 
intersection of the diamond shape inscribed inside the voxel as opposed to the entire 
voxel in the 26-separable case. 

from two points on opposite ends of the voxel, let us call these points pmin and pmax. If 

these distances have opposite signs, i.e. pmin and pmax are on opposite sides of the plane, 

this indicates overlap. The selection of pmin and pmax determines the separability of the 

resultant voxelization, see fgure 3.1. 

T XY ,T YZ ,T ZXSimilarly, when testing the triangle projections against their respec-
XY YZ ZXtive voxel projections p ,p ,p , we use the projected inward facing edge normals 

XY YZ ZX(n ,n , n for i = 0, 1, 2) to select the "most interior" point on the box for each edge ei ei ei 

XY YZ ZX(e ,e , e for i = 0, 1, 2), and if all projected edge to interior point distances are i i i 

positive this indicates overlap within that projection, see fgure 3.2. 

Factorization As described in Schwarz and Seidel [14] and Schwarz [13], the points 
XY YZ ZXpmin and pmax and p ,p , p (for i = 0, 1, 2) are determined with the aid of an ofset ei ei ei 

vector, known as a critical point, which is determined by the relevant normal. However, if 

we take the distance calculations and refactor them such that minimal computation occurs 

while iterating over the voxels, i.e. factor out all computations not directly dependent on 

the voxel coordinates of p, we can actually simplify the expressions to the point that the 
XY YZ ZXcritical point and the points pmin and pmax and p ,p , p for i = 0, 1, 2 need never ei ei ei 

,dYZ , dZXbe determined. Instead we substitute per-triangle variables dmin, dmax and dXY 
ei ei ei 
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Figure 3.2: pei for 26-separable voxelization on the left, and for 6-separable voxelization 
on the right. Similar to the plane-overlap test, the 6-separable voxelization is actually 
testing against the diamond inscribed inside the voxel's planar projection. 

(for i = 0, 1, 2), which represent the factored out components of the distance calculation 

not dependent on the voxel coordinates. 

Optimization There are several ways in which we can optimize this process with an 

eye towards reducing the amount of computation that occurs in the innermost loops of 

our bounding box traversal. 

1. The frst involves pre-computing all per-triangle variables, which includes the trian-
XY YZ ZXgle normal n, the nine planar projected edge normals n ,n , n (for i = 0, 1, 2),ei ei ei 

,dYZ , dZXand the eleven factored variables dXY (for i = 0, 1, 2), dmin, and dmax.ei ei ei 

2. Determine the dominant normal direction, and use this to select the orthogonal 

plane of maximal projection (XY, YZ, or ZX), then iterate over the component 

axes of this plane frst, the remaining axis we shall refer to as the depth-axis. 

3. Test the 2D projected overlap with the orthogonal plane of maximal projection 

frst. 

4. Replace the plane overlap test with an intersection test along the depth-axis test 

to determine the minimal necessary range to iterate over (rather than the entire 



8 

range of the bounding box along the depth-axis). 

5. Test the remaining two planar projections for overlap. 

Should all of these tests succeed, we can confrm that triangle T intersects voxel p. Pseu-

docode for both conservative and thin voxelization routines is provided in the Appendix 

in fgures 6.1 and 6.2, respectively. For more detail on the triangle/box overlap test, the 

reader is referred to Schwarz and Seidel [14], Schwarz [13], and Pantaleoni [11]. 

3.1 Triangle-parallel voxelization 

The most natural approach to voxelization of an input mesh is to parallelize on the 

input geometry (i.e. the triangles). Schwarz [13] implemented such an approach in a 

Direct3D Compute shader as a single pass. Schwarz and Seidel [14] and Pantaleoni [11] 

implemented a multi-pass approach to improve parallelism. Schwarz and Seidel [14] im-

proved coherence by specializing the triangle-box intersection code into nine diferent 

voxel-dependent cases; 1D bounding boxes along each axis; 2D bounding boxes in each 

coordinate plane; and 3D bounding boxes for three dominant normal directions. Unfor-

tunately this requires a 2-pass approach, and while it results in high thread coherence 

(since kernels operate exclusively on similar triangles), it is quite complex, and exceeds 

the number of available image units commonly available. However, we can reduce this by 

a factor of three, allowing all 1D, 2D, and 3D cases to be treated the same by performing 

a simple transformation discussed in section 3.2. 

Input geometry is frst transformed into "voxel-space," that is the space ranging from 

(0, 0, 0)T to (Vx, Vy, Vz)
T, in the vertex shader. Second, an intersection routine im-

plemented in the geometry shader, as described in section 3, performs the voxelization, 

the performance of which can be seen in fgure 3.3. It is readily apparent that a na1ve 

triangle-parallel approach only performs well in scenes that exhibit certain characteristics, 

for instance, the evenly tessellated XYZ RGB Dragon and Stanford Bunny models, both 

scenes that exhibit even and regular triangulation. Any scene that contains large triangles 

(such as might be found on a wall) like the Crytek Sponza Atrium, the Conference Room, 

or even, sadistically, a single large scene-spanning triangle, the na1ve triangle-parallel ap-

proach has no mechanism by which to balance the workload, and the voxelization must 

wait while individual threads work alone to voxelize large triangles. 
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Figure 3.3: Performance of a na1ve triangle-parallel voxelization, performance decreases 

dramatically on scenes containing large polygons. 

3.2 Fragment-parallel voxelization 

This observation of poor work-balance in unevenly tessellated scenes is what led Schwarz 

and Pantaleoni to introduce complex tile-assignment and sorting stages to their voxeliza-

tion pipelines. Our fragment-parallel voxelization is based on the observation that much 

of our triangle-intersection routine can simply be moved to the fragment shader, provid-

ing the opportunity for vastly more parallelism. Thus we exploit the fragment stage of the 

OpenGL pipeline as a sort of ad-hoc single-level of dynamic parallelism. There are sev-

eral implementation particulars required to ensure a gap-free voxelization, which will be 

discussed in a later section. The performance results of our single-pass fragment-parallel 

implementation can be observed in fgure 3.4, and most noteworthy is the fact that it 

performs very well on the exact scenes that the triangle-parallel voxelization struggled 

with, and most poorly on scenes with large amounts of fne detailed geometry (XYZ RGB 

Dragon & Hairball). 

The fragment-parallel implementation is far more unique and must be adapted to the 
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pipeline in order to produce a correct voxelization. At present, only Crassin and Green 

[3] describe a similar approach. Our utilization of the fragment stage allows us to beneft 

from the rasterization and interpolation acceleration provided by the graphics hardware. 

However, there are several issues we must concern ourselves with when endeavoring to 

produce a "gap-free" voxelization, (1) gaps within triangles caused by an overly oblique 

"camera" angle, and (2) gaps between triangles caused by OpenGL's rasterization rules. 
XY YZ ZX , dXY ,dYZ , dZXAs in the triangle-parallel approach values n, n ,n , n (for i = ei ei ei ei ei ei 

0, 1, 2), dmin, and dmax are precomputed. However, in this implementation they are 

calculated in the geometry shader, and passed as flat non-varying attributes to the 

fragment shader. Essentially, we allow the rasterizer to take over for iterating over the 

axes of the dominant planar projection, leaving the fragment shader to confrm overlap 

with the dominant plane, calculate the depth intersection range according to the desired 

separability rules, and confrm the remaining two planar projections. In the pseudocode 

in fgures 6.1 and 6.2, the portion of code that would be moved into the fragment shaders 

goes from line 15 to line 20 in fgure 6.1, and from 14 to line 20 in fgure 6.2. 
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Figure 3.4: Performance of fragment parallel voxelization. This exhibits poor-

performance in scenes with large numbers of small triangles. Performance degradation is 

exacerbated as ratio of voxel-size to triangle-size increases. 
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Figure 3.5: Na1ve rasterization on input geometry can lead to gaps in the voxelization. 

This can be solved in two ways, the center image demonstrates swizzling the vertices of 

the input geometry, while the image on the right demonstrates changing the projection 

matrix. 

Gap-Free Triangles We can solve the frst problem, illustrated in fgure 3.5, in one 

of two ways, both of which rely on determining the dominant normal direction of the 

triangle. The frst approach relies on constructing an orthographic projection matrix 

per-triangle, which views the triangle against the axis of its maximum projection as 

determined by the dominant normal direction. Alternately, we can change the input 

geometry, again based on the dominant normal direction, such that the XY plane is 

always the axis of maximum projection. This can be accomplished by a simple hardware 

supported vector swizzle described below ⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩
 

vi,yzx nx dominant 
2 

∀i=0vi,xyz = vi,zxy ny dominant 

vi,xyz nz dominant 

However, we must be sure to "unswizzle" when storing in the destination texture. 

Additionally, a similar triangle swizzling approach can be used to reduce the number of 

cases taken in the Schwarz and Seidel [14] approach. With triangle swizzling, the number 

of cases drops from 9 to 3, one for each of the 1D, 2D, and 3D cases. Figure 3.6 depicts 

the selection of the largest triangle projection based on the dominant normal direction. 
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Figure 3.6: The largest component of the normal n of the original triangle determines the 

plane of maximal projection (XY, YZ, or ZX) and the corresponding swizzle operation 

to perform. 

Conservative Rasterization The second problem can be solved with conservative 

rasterization. Conservative rasterization ensures that every pixel that touches a triangle 

is rasterized, which is counter to how the hardware rasterizer works. There are several 

approaches to overcome this, which generally involve "dilating" the input triangle. Has-

selgren et al. [8] dilated input triangles by expanding triangle vertices into pixel sized 

squares and computing the convex hull of the resultant geometry. Tessellation of this 

shape can be computed in the geometry shader. Alternately, Hasselgren also proposed 

computing the bounding triangle of the dilated geometry from the previous approach 

and simply discarding in a fragment shader all fragments outside of the AABB. Hertel et 

al. [9] proposed a similar approach, computing the dilated triangle T ' by constructing a 

triangle of intersecting lines parallel to the sides of the original triangle T at a distance 

of l, where l is half the length of the pixel diagonal, see fgure 3.7 for examples of these 

techniques. 
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image show the approach of expanding triangles vertices to size of pixel, and tessellating 

the resultant convex-hull, the middle image simply creates the minimal triangle to en-

compass the expanded vertices, and relies on clipping to occur later in the pipeline. The 

rightmost approach is from Hertel et al. [9], and simply expands the triangle by half the 

length of the pixel diagonal and also relies on clipping to remove unwanted pixels. 

' With the Hertel approach the dilated vertices v of T ' can be easily computed as i 

' ei−1 ei 
vi = vi + l + . 

ei−1 · nei ei · nei−1 

In our case working on a 2D triangle projection in a premultiplied voxel space l will 
√ 

always be 2/2. 

It should be noted that conservative rasterization has the potential to produce unnec-

essary overhead in the form of fragment threads that are ultimately rejected in the fnal 

voxelization intersection test. As triangles get smaller and l remains constant, the size 
area(T )of the dilated triangle T ' to the size of the original triangle T causes the ratio area(T g) to 

become smaller. This ratio can be used to approximate an upper bound on the expected 

efciency of per-triangle fragment thread utilization. This goes part of the way to ex-

plaining the fragment-parallel technique's poor performance in highly tessellated scenes 

with many small triangles, but is actually exacerbated further by poor quad utilization 
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¯Figure 3.8: Sub-voxel sized triangle exhibiting thread utilization of only 8.3% after tri-
angle dilation, note, that this can actually get much worse depending on the triangle 
confguration. 

for small triangles. Since texture derivatives require neighbor information, even if only 

one pixel of a quad is covered, the entire quad is launched. This means that triangles 

smaller than a voxel will utilize only 25% of the threads allocated to them before triangle 

dilation is taken into account. After triangle dilation, thread utilization can be signif-

cantly worse, see fgure 3.8, and in scenes with millions of sub-voxel sized triangles, can 

lead to massive oversubscription and poor performance 

Additionally, it was our observation that voxelization methods that relied purely on 

raster-based conservative voxelization methods tended to be overly conservative along 

their edges where clipping against the AABB couldn't help them, resulting in false pos-

itives, see fgure 3.9. Since our approach maintains a computational intersection test 

inside the fragment shader, these voxels are still culled. 
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Figure 3.9: Thin (6-separable) voxelization of the Conference Room scene illustrating 

false positives (in red) resulting from a na1ve conservative-rasterization based voxeliza-

tion. 

3.3 Hybrid Voxelization 

Comparing the performance of both single-pass techniques side-by-side, as illustrated in 

fgure 3.10, the inversion of strengths and weaknesses becomes even more apparent. By 

using the fragment shader to increase the available parallelism, the worst-case scenario 

for the triangle-parallel approach becomes the best case for the fragment-parallel case. 

Conversely, the best-case for the fragment-parallel approach is the worst case for the 

triangle-parallel approach. Thus, we logically arrive at a hybrid approach, one in which 

large triangles are divided into fragment-threads using the fragment-parallel technique, 

and small triangles are voxelized using the triangle-parallel technique, thus avoiding poor 

thread utilization and oversubscription. 
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Figure 3.10: Comparison of the relative performance of Triangle-parallel and Fragment-
parallel techniques. Note, where one technique performs poorly, the other performs well. 
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Figure 3.11: A simple classifcation routine run before the voxelization stage allows create 

a hybrid voxelization pipeline and utilize the optimal voxelization approach according to 

per-triangle characteristics. 

We take care to preserve coherent execution among our shader threads with the 

introduction of a classifcation stage to our pipeline prior to voxelization, see fgure 3.11, 

which outputs corresponding index bufers according each triangle's classifcation. These 

classifed index bufers are then used to voxelize the corresponding geometry using the 

appropriate technique. 

Triangle Selection Heuristic The crux of the hybrid-voxelization approach lies in the 

heuristic used for determining whether a triangle is most suitable for voxelization using a 

triangle-parallel approach or a fragment-parallel approach. The Schwarz and Seidel [14] 

approach is dependent on voxel extents of triangle bounding boxes, however, we have 

already determined that the fragment-parallel approach will handle all large triangles, 

and the triangle-parallel approach will handle all small triangles. 

The heuristic for the selection of a cutof value can be approached in many diferent 

ways, for instance, the size of the dilated triangle area (T ' ) most accurately represent the 

number of potential voxel intersections to be evaluated in the fragment stage, but is not 

a fair representation of the amount of work required in the triangle-parallel stage should 

the triangle be classifed as small. Furthermore, the dilated triangle has a minimum size, 

which must be considered as undilated triangles approach zero area. The 3D voxel-extents 

provide a good indication of the amount of iteration required to voxelize a triangle in 

the geometry stage, however, since the depth-range is calculated, the 2D-projected voxel-
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Figure 3.12: Our fnal hybrid voxelization implementation mitigates the cost processing 
the input geometry twice by immediately voxelizing input triangles classifed as "small" 
and deferring only those triangles considered to be "large." 

extents provide a closer representation of the actual work performed. Additionally, we 
area(T )could consider the ratio of , which, as it varies from 0 to 1, indicates very small area(T g) 

to very large triangles, respectively. 

In our experiments, we found that simply considering the 2D projected area of the 

triangle T worked best, and for most scenes an empirically derived triangle size of ap-

proximately 2 to 4 voxel units squared provided a good starting cutof value for triangle 

classifcation. In fgure 3.13 we can see the full range of voxelization performance vary 

from that of the fragment-parallel approach at a cutof of zero, to the performance of 

the triangle-parallel approach once the cutof is large enough to encompass all triangles. 

Note that fgure 3.13 represents an unreasonable range of cutof values; this is meant to 

illustrate the performance characteristics as the cutof value changes. Generally, there is 

a fairly large range of cutof values corresponding to near-optimal performance. 
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Figure 3.13: Initially at zero, all triangles are classifed as "large" and therefore voxelized 

by the fragment-parallel shader. As the cutof value (measured in voxel area) increases 

triangles are classifed and assigned to either the triangle-parallel or fragment-parallel 

approaches. As the cutof continues to increase performance exhibits a stair-step pat-

tern as triangles are reclassifed. Eventually all triangles are classifed as "small" and 

performance reverts to that of the triangle-parallel approach. 

We are, however, most interested in the cutof value that will provide the minimal 

voxelization time, and these values tend to occur at much lower values. Figure 3.14 

shows only the earlier range of cutof values. Examination of the data confrms that for 

most inputs a cutof value of just a few voxels squared provides for optimal voxelization 

timing. It is conceivable that a bracketing search could determine and adjust this value 

automatically [12]. 
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Figure 3.14: Performance graph of the hybrid voxelization technique displaying a lower 

range of cutof values such that the optimal cutof can be clearly discerned. 

Optimization In order to avoid requiring separate output bufers for all input at-

tributes, we output only index bufers which are then used to render only the appropri-

ate subset of the geometry with the voxelization method as determined by the classi-

fer. On many scenes this allowed us to achieve improved performance over either the 

fragment-parallel or the triangle-parallel approach alone. However, when we examine the 

performance of a scene ideally suited to the triangle-parallel approach like the XYZ RGB 

Dragon, we observe that the best performance that can be achieved with our triangle-

classifer is approximately twice that of the triangle-parallel approach alone. This can be 

explained by the amount of work it takes to process the 7 million triangles in the scene. 

Each triangle is extremely small (generally less than the size of a voxel) and takes rela-

tively little work to voxelize, and similarly little work to classify. In this case, run-time is 

dominated by the overhead of creating threads, rather than the work done in each thread, 

and with our current approach we have doubled the number of threads to be created. 

Fortunately, we can exploit the fact that in our classifcation, we employ the triangle-
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Figure 3.15: Full pipeline including shader stages. Note that while there are two "passes" 
only a very small subset of the geometry, that is classifed as "large," is processed twice. 

parallel approach only for small triangles. Combined with the fact that the number of 

small triangles in a scene almost always dominates the number of large triangles, we can 

dramatically decrease the overhead of our hybrid voxelization pipeline. As illustrated in 

fgure 3.12, by moving the triangle-parallel voxelization into the classifcation shader and 

deferring only the larger triangles to be voxelized by the fragment shader, we efectively 

reduce a two-pass approach to a just slightly over one-pass approach, meaning, that while 

all triangles are processed at least once, only a few are processed twice. Furthermore, 

since the overhead of classifcation and voxelization of small triangles is so low, this makes 

our hybrid approach competitive on all scenes, even those tailored for a triangle-parallel 

approach. The full pipeline is shown in fgure 3.15, illustrating the voxelization of the 

XYZ RGB Dragon scene. 

3.. Voxel-List Construction 

We explored two methods of Voxel-List construction, an important step in the construc-

tion of a sparse hierarchical structure such as an octree. A mipmap construction method 

based on Ziegler et al.'s [17] HistoPyramid compaction techniques runs as a post-process, 

generating a list of voxel locations, and could be extended to produce an entire octree. 

Since it runs after the voxelization process, voxelization timing is not directly impacted, 
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but its cost can become signifcant as voxel resolution increases. Additionally, its mem-

ory requirements come with an additional 33% cost for mipmap allocation, and adding 

additional attribute output bufers requires additional base level voxel textures. 

Alternately, an atomic counter can be used to increment the index of output bufer 

and written inline with the voxelization. Crassin and Green [3] used this technique 

to generate a sparse "voxel-fragment-list" in which multiple elements may refer to the 

same voxel location, which are later merged in hierarchy creation. To avoid duplicate 

voxel assignments, unfortunately, requires a dense 3D r32ui texture. By employing an 

imageAtomicCompSwap operation at the voxel location, we can restrict incrementing the 

atomic counter to a single thread accessing the voxel location. 

The use of atomic operations directly impacts voxelization performance, particularly 

in situations where many threads are attempting to access the same voxel. We observed 

that the additional voxel culling provided by a rigorous computational intersection test 

helped signifcantly in reducing the number of write conficts for the atomics to resolve. 

The inline atomic method also has the advantage of not requiring additional base level 

textures for additional attribute outputs, however, on some architectures correct averag-

ing of attribute information (colors, normals, etc.) may require emulation of (as of yet) 

unsupported atomic operations Crassin and Green [3]. 

3.5 Attribute Interpolation 

Attribute interpolation must be handled manually in the triangle-parallel approach. But 

as a beneft of its usage of the graphics pipeline, the fragment-parallel approach can 

exploit the fxed-function interpolation hardware provided by the rasterizer. Since the 

fragment-parallel voxelization method relies on triangle dilation to ensure a conservative 

voxelization, care must be taken to correctly interpolate triangle attributes across the 

dilated triangle. To accomplish this, we calculate the barycentric coordinates of the 
' dilated triangle vertices vi with respect to the undilated triangle vertices vi using signed 

area functions. 

' 
' area (vi, vi+1, vi+2)

λi vi = 
area (v0, v1, v2) 

' By applying the barycentric coordinates computed at the dilated triangle vertices vi 
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Figure 3.16: Voxelization of the Crytek Sponza Atrium scene with color attributes inter-
polated and stored per-voxel. 

to the vertex attributes, i.e. vertex colors, normals, or texture coordinates ti, we can 

calculate corresponding dilated attributes t ' i as follows 

' ' ' ' t = λ0 v t0 + λ1 v t1 + λ2 v t2i i i i 

By passing dilated attributes in from the geometry shader to the vertex shader in this 

manner, we ensure that attributes interpolate across the undilated region of the dilated 

triangle in the same manner as they would on the undilated triangle, this holds regardless 

of the dilation factor l applied. An example this can be seen in fgure 3.16. 
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Chapter .: Results 

We tested our hybrid voxelization approach against several diferent models at vari-

ous voxel resolutions, and compared the results to purely triangle-parallel and purely 

fragment-parallel implementations, as well as the data available from Schwarz and Seidel 

[14] and Pantaleoni [11]. We included the XYZ RGB Asian dragon as an example of a 

pathological worst case-scenario for the fragment-parallel approach, and we included a 

single scene-spanning triangle as a pathological worst case for the triangle-parallel ap-

proach. All results were generated on an Intel Core i7 950 @ 3.07GHz with an NVIDIA 

GeForce GTX 480. Table 4.1 shows the performance comparison of the diferent tech-

niques. Note that the hybrid approach is able to either substantially improve upon or 

provide comparable performance of the triangle and fragment-parallel approaches. Addi-

tionally the performance of our hybrid voxelization beats the performance of competing 

techniques for which we have data. Despite its simple classifcation scheme, our approach 

provides a performance improvement over both Schwarz and Seidel [14] and Pantaleoni 

[11]. It should be noted that the cutof values are likely to be highly architecture de-

pendent, we would expect them to change when executed on Nvidia's Kepler or AMD's 

Graphics Core Next. We would also point out, that comparing to the results present in 

Crassin and Green [3], we achieve highly competitive results with inferior hardware. 
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Model Grid size 
Triangle-parallel 

6-separating (thin) voxelization 
Fragment-parallel Hybrid @voxels2 Schwarz & Seidel VoxelPipe 

large triangle 
(1 tri) 

1283 

2563 

5123 

10.62 
42.4 
169.7 

0.03 0.05 @2.0 
0.06 0.07 @2.0 
0.32 0.32 @2.0 

XYZ RGB Asian 
Dragon 
(7,219,045 tris) 

1283 

2563 

5123 

6.37 
7.70 
9.55 

165.2 8.54 @2.0 11.36 
165.0 8.59 @2.0 14.73 
164.6 10.19 @2.0 16.67 

21.2 

23.6 

Crytek Sponza Atrium 
(262,267 tris) 

1283 

2563 

5123 

13.4 
53.2 
208.7 

10.65 1.07 @3.1 
11.13 1.75 @3.5 
11.87 3.84 @3.1 

Stanford Bunny 
(69,666 tris) 

1283 

2563 

5123 

0.28 
0.82 
3.12 

1.58 0.19 @2.0 0.60 
1.55 0.53 @2.5 0.89 
1.82 1.91 @0.0 2.35 

Conference 
(331,179 tris) 

1283 

2563 

5123 

9.23 
36.04 
141.2 

11.47 1.48 @2.0 3.9 
11.62 1.73 @2.0 
11.94 3.01 @2.0 59.3 

3.3 

8.5 

Table 4.1: Running time (in ms) for diferent voxelization approaches, number in red 
indicate pathological worst case scenarios for the corresponding method. 



27 

Chapter 5: Discussion 

We implemented a wide variety of voxelization and conservative rasterization techniques 

in our experiments. Our implementations targeted the capabilities described in the 

OpenGL 4.2 specifcation. Our approach relied on the ability to perform texture writes 

to arbitrary locations enabled by the image API. We found that by replacing transform 

feedback bufers with atomic counters and image based bufer writes, we achieved perfor-

mance increases of up to 4x. Additionally, our classifcation approach relied on indirect 

bufers to enable the asynchronous execution of the voxelization stage. A beneft of our 

OpenGL implementation is that it avoids the performance penalty of context switch-

ing and implicit synchronization points present in a CUDA or OpenCL implementation. 

With the introduction of OpenGL 4.3, the triangle-parallel approach could easily be im-

plemented in a Compute shader, but it remains to be seen if there is an advantage to 

this. 

Another application of our initial classifcation scheme, see fgure 3.11, could be to 

"pre-classify" scenes. Then by maintaining two index-bufers, hybrid-voxelization could 

be employed absent the cost of classifcation. Of course, this would only make sense when 

applied to static geometry. 

We found that several of our results agreed with Sintorn et al. [15] and Hertel et 

al. [9], that geometry amplifcation of the frst Hasselgren technique led to performance 

degradations. We also found that atomic operations more greatly impacted the triangle-

parallel approach, likely due to the fact that each triangle-parallel thread is responsible 

for more writes than each fragment-parallel thread. 

Future work could exploit true dynamic parallelism facilities currently only available 

in CUDA 5 to spawn exactly one thread for each triangle/voxel pair. While this would 

still obviate need for complex tiling and sorting strategies, it would unfortunately remove 

the ability to exploit the remaining fxed-function hardware present on the GPU exposed 

to the graphics pipeline. 
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Chapter 6: Conclusion 

This paper has shown how a GPU-accelerated computational surface voxelization can 

be achieved without resorting to CUDA or OpenCL. Our hybrid approach to voxeliza-

tion leverages the strengths of the graphics pipeline to improve parallelism where it is 

most needed without sacrifcing the quality of the voxelization. Its simple classifcation 

scheme deftly avoids the pitfalls of poor quad utilization and oversubscription present 

in the fragment-parallel approach, while also avoiding the idle threads problem of the 

triangle-parallel approach. It is relatively easier to implement on current gen hardware 

using existing graphics APIs, and should prove to be highly suitable for next-gen console 

systems. It exhibits superior performance to existing techniques, especially on scenes 

with non-uniform triangle distributions. 
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Appendix 

We have provided pseudocode for both conservative, fgure 6.1, and thin, fgure 6.2, 

voxelization routines in hopes of clarifying any confusion that might arise about their 

implementation. 

1: function conservativeVoxelize(v0, v1, v2, bmin, bmax, unswizzle) 

2: ei ← v(i+1) mod 3 − vi 

3:	 n ← cross (e0, e1)
 
XY T
4: nei 
← sign (nz) · (−ei,y, ei,x)

YZ5:	 nei 
← sign (nx) · (−ei,z, ei,y)

T
 

ZX
6: nei 
← sign (ny) · (−ei,x, ei,z)

T  ) ( ) ( ) 
dXY XY	 XY XY7:	 ei 

← − nei 
, vi,xy + max 0, nei,x + max 0, nei ,y ) ( ) ( ) 

dYZ YZ	 YZ YZ8:	 ei 
← − nei 

, vi,yz + max 0, nei,x + max 0, nei ,y ) ( ) ( ) 
dZX ZX	 ZX ZX9:	 ei 
← − nei 

, vi,zx + max 0, nei,x + max 0, nei ,y 

10:	 n ← sign (nz) · n II ensures zmin < zmax 

11:	 dmin ← (n, v0) − max(0, nx) − max(0, ny) 

12:	 dmax ← (n, v0) − min(0, nx) − min(0, ny) 

13:	 for px ← bmin,x, . . . , bmax,x do 

14: for py ← bmin,y, . . . , bmax,y do ( ) )
XY + dXY15: if ∀2 

i=0 nei 
, pxy ei 

≥ 0 then 
116: zmin ← max bmin,z, (−(nxy, pxy) + dmin) nz( l	 ) 
117: zmax ← min bmax,z, (−(nxy, pxy) + dmax) nz 

18: for pz ← zmin, . . . , zmax do ( )  ) )
YZ + dYZ ZX + dZX 

i=0 ei ei ei ei19:	 if ∀2 n , pxy ≥ 0 ∧ n , pxy ≥ 0 then 

20:	 V [unswizzle · p] ← true 

21: end function 

Figure 6.1: Pseudocode for a conservative (26-separable) computational voxelization, this 

assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, while unswizzle 

represents a permutation matrix used to get the unswizzled voxel location. 
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1: function thinVoxelize(v0, v1, v2, bmin, bmax, unswizzle) 

2: ei ← v(i+1) mod 3 − vi 

3: n ← cross (e0, e1) 
XY4: nei 
← sign (nz) · (−ei,y, ei,x)

T 

YZ5:	 nei 
← sign (nx) · (−ei,z, ei,y)

T 

ZX ← sign (ny) · (−ei,x, ei,z)
T 

+ 0.5 · max

n ← sign (nz) · n II ensures zmin < zmax 

)))
6: nei         ))) 

dXY XY 
ei 
← n XY XY nei,y

YZ 

, 0.5 − vi,xy7: + 0.5 · max n ,    
ei ei,x

YZdYZ YZ 
ei 
← n , 0.5 − vi,yz8: n n,

,

ei ei,x

ZX 
ei,x

ei,y

ZX 
ei,y

    
    

(((    dZX ZX← nei 
, 0.5 − vi,zx9: + 0.5 · max n nei 

10: 

11: dcen ← (n, v0) − 0.5 · nx − 0.5 · ny 

12: for px ← bmin,x, . . . , bmax,x do 

13: for py do← bmin,y, . . . , bmax,y( )
XY n , pxyei 

+ dXY ≥ 0ei

)
1 
nz 

∀2 
i=014: if then 

15: zint ← (−(nxy, pxy) + dcen) 

)
16: zmin ← max (bmin,z, LzintJ) 
17: zmax ← min (bmax,z, Izintl) 

← zmin, . . . , zmax18: for pz do (
V [unswizzle · p] ← true

)
+ dZX 

ei 
≥ 0

)
then∀2 

i=0 
YZ + dYZ ZX≥ 0 ∧	 nei 

19:	 if n , pxyei 
, pxyei 

20: 

21: end function 

Figure 6.2: Pseudocode for a thin (6-separable) computational voxelization, this assumes 

that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, while unswizzle represents 

a permutation matrix used to get the unswizzled voxel location. 






