

AN ABSTRACT OF THE THESIS OF

Randall Rauwendaal for the degree of Master of Science in Computer Science presented

on November 29, 2012.

Title: Hybrid Computational Voxelization Using the Graphics Pipeline

Abstract approved:

Michael J. Bailey

This thesis presents an efcient computational voxelization approach that utilizes the

graphics pipeline. Our approach is hybrid in that it performs a precise gap-free compu-

tational voxelization, employs fxed-function components of the GPU, and utilizes the

stages of the graphics pipeline to improve parallelism. This approach makes use of the

latest features of OpenGL and fully supports both conservative and thin voxelization. In

contrast to other computational voxelization approaches, this approach is implemented

entirely in OpenGL, and achieves both triangle and fragment parallelism through its

use of both the geometry and fragment shaders. A novel approach utilizing the graph-

ics pipeline to complement geometric triangle intersection computations is presented.

By exploiting features of the existing graphics pipeline we are able to rapidly compute

accurate scene voxelization in a manner that integrates well with existing OpenGL ap-

plications, is robust across many diferent models, and eschews the need for complex

work/load-balancing schemes.

© Copyright by Randall Rauwendaal
November 29, 2012
All Rights Reserved

Hybrid Computational Voxelization Using the Graphics Pipeline

by

Randall Rauwendaal

A THESIS

submitted to

Oregon State University

in partial fulfllment of

the requirements for the

degree of

Master of Science

Presented November 29, 2012

Commencement June 2013

Master of Science thesis of Randall Rauwendaal presented on November 29, 2012.

APPROVED:

Major Professor, representing Computer Science

Chair of the Department of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Randall Rauwendaal, Author

ACKNOWLEDGEMENTS

I would like to thank Intel Corporation's Visual Computing Academic Program for fund-

ing this work. Additionally, I would like to thank the Stanford University Computer

Graphics Laboratory for the Dragon and Bunny models, and Crytek for its improved

version of the Sponza Atrium model originally created by Marko Dabrovic. As well as

Anat Grynberg and Greg Ward for the Conference Room model. Special thanks go also

to Patrick Neill for his valuable review. And most of all I would like to thank my wife,

Leslie Rauwendaal, for her infnite patience and valuable input, without which, this never

would have been possible.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Related Work 3

2.1 Graphics Pipeline . 3

2.2 Computational Voxelization . 4

3 Voxelization 5

3.1 Triangle-parallel voxelization . 8

3.2 Fragment-parallel voxelization . 9

3.3 Hybrid Voxelization . 16

3.4 Voxel-List Construction . 22

3.5 Attribute Interpolation . 23

4 Results 25

5 Discussion 27

6 Conclusion 28

Bibliography 28

LIST OF FIGURES

Figure	 Page

1.1	 The XYZ RGB Asian Dragon voxelized at 1283 , 2563, and 5123 resolutions. 1

3.1	 pmin and pmax for 26-separable voxelization on left, and for 6-separable
voxelization on right. Note that for 6-separable voxelization we are actually
testing for intersection of the diamond shape inscribed inside the voxel as
opposed to the entire voxel in the 26-separable case. 6

3.2	 pei for 26-separable voxelization on the left, and for 6-separable voxeliza-
tion on the right. Similar to the plane-overlap test, the 6-separable vox-
elization is actually testing against the diamond inscribed inside the voxel's
planar projection. 7

3.3	 Performance of a na1ve triangle-parallel voxelization, performance decreases
dramatically on scenes containing large polygons. 9

3.4	 Performance of fragment parallel voxelization. This exhibits poor-performance
in scenes with large numbers of small triangles. Performance degradation
is exacerbated as ratio of voxel-size to triangle-size increases. 11

3.5	 Na1ve rasterization on input geometry can lead to gaps in the voxelization.
This can be solved in two ways, the center image demonstrates swizzling
the vertices of the input geometry, while the image on the right demon-

strates changing the projection matrix. 12

3.6	 The largest component of the normal n of the original triangle determines
the plane of maximal projection (XY, YZ, or ZX) and the corresponding
swizzle operation to perform. 13

3.7	 Various conservative rasterization techniques required in order to produce
a "gap-free" voxelization. The frst two images are from Hasselgren et
al. [8], the leftmost image show the approach of expanding triangles ver-
tices to size of pixel, and tessellating the resultant convex-hull, the middle
image simply creates the minimal triangle to encompass the expanded ver-
tices, and relies on clipping to occur later in the pipeline. The rightmost
approach is from Hertel et al. [9], and simply expands the triangle by
half the length of the pixel diagonal and also relies on clipping to remove
unwanted pixels. 14

LIST OF FIGURES (Continued)
Figure	 Page

¯3.8	 Sub-voxel sized triangle exhibiting thread utilization of only 8.3% after
triangle dilation, note, that this can actually get much worse depending
on the triangle confguration. 15

3.9	 Thin (6-separable) voxelization of the Conference Room scene illustrating
false positives (in red) resulting from a na1ve conservative-rasterization
based voxelization. 16

3.10 Comparison of the relative performance of Triangle-parallel and Fragment-

parallel techniques. Note, where one technique performs poorly, the other
performs well. 17

3.11 A simple classifcation routine	 run before the voxelization stage allows
create a hybrid voxelization pipeline and utilize the optimal voxelization
approach according to per-triangle characteristics. 18

3.12 Our fnal hybrid voxelization implementation mitigates the cost process-
ing the input geometry twice by immediately voxelizing input triangles
classifed as "small" and deferring only those triangles considered to be
"large." . 19

3.13 Initially at zero, all triangles are classifed as "large" and therefore vox-
elized by the fragment-parallel shader. As the cutof value (measured in
voxel area) increases triangles are classifed and assigned to either the
triangle-parallel or fragment-parallel approaches. As the cutof continues
to increase performance exhibits a stair-step pattern as triangles are re-
classifed. Eventually all triangles are classifed as "small" and performance
reverts to that of the triangle-parallel approach. 20

3.14 Performance graph of the hybrid voxelization technique displaying a lower
range of cutof values such that the optimal cutof can be clearly discerned. 21

3.15 Full pipeline including shader stages. Note that while there are two "passes"
only a very small subset of the geometry, that is classifed as "large," is
processed twice. 22

3.16 Voxelization of the Crytek Sponza Atrium scene with color attributes in-
terpolated and stored per-voxel. 24

LIST OF FIGURES (Continued)
Figure	 Page

6.1	 Pseudocode for a conservative (26-separable) computational voxelization,
this assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled,
while unswizzle represents a permutation matrix used to get the unswiz-
zled voxel location. 31

6.2	 Pseudocode for a thin (6-separable) computational voxelization, this as-
sumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, while
unswizzle represents a permutation matrix used to get the unswizzled
voxel location. 32

4.1
26

LIST OF TABLES
Table Page

Running time (in ms) for diferent voxelization approaches, number in red
indicate pathological worst case scenarios for the corresponding method. .

Chapter 1: Introduction

The ability to produce fast and accurate voxelizations, as seen in fgure 1.1, is highly de-

sirable for many applications, such as intersection computation, hierarchy construction,

ambient occlusion and global illumination. There have been many approaches to achiev-

ing such voxelizations. These balance tradeofs between accuracy, speed, and memory

consumption. We make a distinction between requirements that are orthogonal to each

other. For instance, binary voxelization vs. voxelization that requires blending at active

voxels; naturally, binary voxelization has lower memory requirements, as it is sufcient

to use a single bit to indicate whether a voxel is active.

Another consideration is surface voxelization vs solid voxelization. Solid voxelization

marks any voxel on or within a model as active (and thus requires watertight geometry),

whereas surface voxelization considers only those voxels in contact with the surface of

the model, this criteria can be further split by defning the separability requirement.

A conservative voxelization marks any voxel that comes in contact with the surface as

active, and is thus 26-separable, while a thin voxelization is 6-separable.

Additionally, since voxelization discretizes a scene into regular volumetric elements,

as voxel density increases, the memory requirements of maintaining such a dense data

structure become prohibitive, as generally most of the scene consists of empty space.

Figure 1.1: The XYZ RGB Asian Dragon voxelized at 1283 , 2563, and 5123 resolutions.

2

Many approaches attempt to mitigate these high memory requirements by constructing

a sparse hierarchical voxel representation which retains voxel's regular size, but cluster

similar regions (empty or solid) into a tree structure, typically an octree.

Initially, we make a distinction between two primary voxelization approaches on

the GPU; computational approaches that completely eschew the graphics pipeline like

Schwarz and Seidel [14], Schwarz [13] and Pantaleoni [11], versus rasterization based

approaches to voxelization.

In this paper we take a hybrid approach to voxelization. While we still utilize the

GPU as a massively parallel compute device, we do not abandon the standard graphics

pipeline to do so. Instead, we build on its strengths, allowing it to perform the triangle-

fragment workload balancing that it does so well with rasterization, and applying this to

voxelization. This frees us from having to delve into optimal tiling and triangle sorting

strategies in order to balance an inherently unbalanced workload of non-uniform triangles.

In this paper we touch upon many voxelization techniques. In chapter 2, we cover

the relevant work in the feld. In chapter 3 we discuss frst our triangle-parallel and

fragment-parallel approaches and how we combine them for our hybrid implementation.

Additionally, we discuss several Voxel-List construction methods, and a method to cor-

rectly interpolate attributes using barycentric coordinates. This is followed by our results,

chapter 4, a discussion of our fndings and potential future work, chapter 5, and our con-

clusions, chapter 6.

3

Chapter 2: Related Work

2.1 Graphics Pipeline

Approaches to voxelization take many forms, and must balance several properties. One

of the earlier approaches to utilize the graphics pipeline, Fang and Chen [7] constructed

a surface voxelization via rasterizing the geometry for each voxel slice while clamping

the viewport to each slice. Li et al. [10] introduced "depth peeling" which reduced the

number of rendering passes by capturing 1-level of surface depth complexity per render

pass. These approaches tended to miss voxels, and often must be applied once along each

orthogonal plane to capture missed geometry. Dong et al. [4] utilized binary encoding

to store voxel occupancy in separate bits of multi-channel render targets, allowing them

to process multiple voxel slices in a single rendering pass. This approach is sometimes

referred to as a slicemap, Eisemann et al. [5].

Approaches exist, such as conservative voxelization by Zhang et al. [16], which employ

the conservative rasterization technique of Hasselgren et al. [8]. This approach amplifed

single triangles to potentially nine triangles by expanding triangle vertices to pixel sized

squares and outputting the convex hull of the resultant geometry. Sintorn et al. [15]

improved on this by ensuring that fewer triangles would be generated during triangle

expansion, while Hertel et al. [9] found it was most efective to simply expand triangles

by half the diagonal of a pixel and discard extra fragments in the pixel shader.

Some voxelization techniques also target solid voxelization; generally, these must re-

strict their input geometry to closed, watertight models, and classify voxels as either

interior or exterior. As surface geometry is voxelized, entire columns of voxels are set,

fnal classifcation is based on the count, or parity, of the voxel, an odd value indicates

a voxel as interior, while even indicates exterior. In GPU hardware this corresponds to

applying a logical XOR which is supported by the frame bufer. Fang and Chen [7] pre-

sented such an approach using slice-wise rendering, while Eisemann et al. [6] developed

a high-performance single pass approach.

Most recently Crassin and Green [3] have released an approach that operates similarly

4

to the fragment-parallel component of our scheme, discussed in section 3.2, exploiting the

recently exposed ability to perform random texture writes in OpenGL using the image

API. By constructing an orthographic projection matrix per-triangle in the geometry

shader, they were able to rely on the OpenGL rasterizer to voxelize their geometry.

2.2 Computational Voxelization

More recently, approaches have been developed which take an explicitly computational

approach to voxelization without utilizing fxed function hardware. Schwarz and Sei-

del [14] implemented a triangle parallel voxelization approach in CUDA, which achieved

accurate 6 and 26-separating binary voxelization into a sparse hierarchical octree. Pan-

taleoni's VoxelPipe [11] implementation took a similar approach while fully supporting a

variety of render targets and robust blending support. Both approaches also employed a

tile-based voxelization.

Like the work of Schwarz and Seidel [14] our approach supports both conservative

(26-separating) and thin (6-separating) voxelization. Separability (26 or 6) is a topolog-

ical property defned by Cohen-Or [2] that means no path of N-adjacent (26 or 6) voxels

exists that connects a voxel on one side of the surface and a voxel on the other side.

Two voxels are 26-adjacent if they share a common vertex, edge or face, and 6-adjacent

if they share a face. Our ability to support multiple render targets and texture formats

like Pantaleoni [11] is limited only by the restrictions present in the OpenGL image API.

5

Chapter 3: Voxelization

Whereas previous techniques relied exclusively on the graphics pipeline, or rejected it

completely for a computational approach, we demonstrate how to fnd a middle ground

to apply the techniques of computational voxelization approaches within the framework

of the graphics pipeline. First, however, we must introduce both the triangle-parallel

(section 3.1) and fragment-parallel (section 3.2) techniques which make up the primary

components of our hybrid approach (section 3.3). Both techniques employ the same

3D extension of the Akenine-Moller [1] triangle/box overlap tests found in Schwarz and

Seidel [14] and Pantaleoni [11]. These approaches difer from each other primarily in

their factorization of the computational overlap testing, and the methods in which they

try to achieve optimal parallelism.

Triangle/Voxel Overlap We can consider the exercise of fnding an intersection

between a triangle T (with vertices v0, v1, v2 and edges ei = v(i+1) mod 3 − vi) and a

voxel p to be fundamentally an exercise in frst reducing the number of triangle voxel pairs

to consider, and secondly an efort in reducing the computation required to confrm an

intersection between a triangle and a voxel. Considering initially the potential intersection

between a triangle and the set of all voxels, conceptually, the process is executed in the

following order.

1. Reduce the set of potential voxel intersections to only those that overlap the axis-

aligned bounding volume b of the triangle.

2. Iterate over this reduced set of voxels (from bmin to bmax) and discard any that do

not intersect the triangle's plane.

3. If the triangle plane divides the voxels test all three of its 2D planar projections
T XY ,T YZ ,T ZX to confrm overlap.

The steps above rely heavily on point to plane, and point to line distance calculations.

For instance, the plane overlap test relies on computing the signed distance to the plane

6

pmin

pmax

pmax

pmin

v0 v0

v1 v1

v2v2

n n

-

+

+

-

Figure 3.1: pmin and pmax for 26-separable voxelization on left, and for 6-separable
voxelization on right. Note that for 6-separable voxelization we are actually testing for
intersection of the diamond shape inscribed inside the voxel as opposed to the entire
voxel in the 26-separable case.

from two points on opposite ends of the voxel, let us call these points pmin and pmax. If

these distances have opposite signs, i.e. pmin and pmax are on opposite sides of the plane,

this indicates overlap. The selection of pmin and pmax determines the separability of the

resultant voxelization, see fgure 3.1.

T XY ,T YZ ,T ZXSimilarly, when testing the triangle projections against their respec-
XY YZ ZXtive voxel projections p ,p ,p , we use the projected inward facing edge normals

XY YZ ZX(n ,n , n for i = 0, 1, 2) to select the "most interior" point on the box for each edge ei ei ei

XY YZ ZX(e ,e , e for i = 0, 1, 2), and if all projected edge to interior point distances are i i i

positive this indicates overlap within that projection, see fgure 3.2.

Factorization As described in Schwarz and Seidel [14] and Schwarz [13], the points
XY YZ ZXpmin and pmax and p ,p , p (for i = 0, 1, 2) are determined with the aid of an ofset ei ei ei

vector, known as a critical point, which is determined by the relevant normal. However, if

we take the distance calculations and refactor them such that minimal computation occurs

while iterating over the voxels, i.e. factor out all computations not directly dependent on

the voxel coordinates of p, we can actually simplify the expressions to the point that the
XY YZ ZXcritical point and the points pmin and pmax and p ,p , p for i = 0, 1, 2 need never ei ei ei

,dYZ , dZXbe determined. Instead we substitute per-triangle variables dmin, dmax and dXY
ei ei ei

7

v0

ne0

v1 v2

ne1

ne2

pe1

pe2

pe2 pe0

pe1

v0

ne0

v1 v2

ne1

ne2
pe0

+

+

+

+

+

-

Figure 3.2: pei for 26-separable voxelization on the left, and for 6-separable voxelization
on the right. Similar to the plane-overlap test, the 6-separable voxelization is actually
testing against the diamond inscribed inside the voxel's planar projection.

(for i = 0, 1, 2), which represent the factored out components of the distance calculation

not dependent on the voxel coordinates.

Optimization There are several ways in which we can optimize this process with an

eye towards reducing the amount of computation that occurs in the innermost loops of

our bounding box traversal.

1. The frst involves pre-computing all per-triangle variables, which includes the trian-
XY YZ ZXgle normal n, the nine planar projected edge normals n ,n , n (for i = 0, 1, 2),ei ei ei

,dYZ , dZXand the eleven factored variables dXY (for i = 0, 1, 2), dmin, and dmax.ei ei ei

2. Determine the dominant normal direction, and use this to select the orthogonal

plane of maximal projection (XY, YZ, or ZX), then iterate over the component

axes of this plane frst, the remaining axis we shall refer to as the depth-axis.

3. Test the 2D projected overlap with the orthogonal plane of maximal projection

frst.

4. Replace the plane overlap test with an intersection test along the depth-axis test

to determine the minimal necessary range to iterate over (rather than the entire

8

range of the bounding box along the depth-axis).

5. Test the remaining two planar projections for overlap.

Should all of these tests succeed, we can confrm that triangle T intersects voxel p. Pseu-

docode for both conservative and thin voxelization routines is provided in the Appendix

in fgures 6.1 and 6.2, respectively. For more detail on the triangle/box overlap test, the

reader is referred to Schwarz and Seidel [14], Schwarz [13], and Pantaleoni [11].

3.1 Triangle-parallel voxelization

The most natural approach to voxelization of an input mesh is to parallelize on the

input geometry (i.e. the triangles). Schwarz [13] implemented such an approach in a

Direct3D Compute shader as a single pass. Schwarz and Seidel [14] and Pantaleoni [11]

implemented a multi-pass approach to improve parallelism. Schwarz and Seidel [14] im-

proved coherence by specializing the triangle-box intersection code into nine diferent

voxel-dependent cases; 1D bounding boxes along each axis; 2D bounding boxes in each

coordinate plane; and 3D bounding boxes for three dominant normal directions. Unfor-

tunately this requires a 2-pass approach, and while it results in high thread coherence

(since kernels operate exclusively on similar triangles), it is quite complex, and exceeds

the number of available image units commonly available. However, we can reduce this by

a factor of three, allowing all 1D, 2D, and 3D cases to be treated the same by performing

a simple transformation discussed in section 3.2.

Input geometry is frst transformed into "voxel-space," that is the space ranging from

(0, 0, 0)T to (Vx, Vy, Vz)
T, in the vertex shader. Second, an intersection routine im-

plemented in the geometry shader, as described in section 3, performs the voxelization,

the performance of which can be seen in fgure 3.3. It is readily apparent that a na1ve

triangle-parallel approach only performs well in scenes that exhibit certain characteristics,

for instance, the evenly tessellated XYZ RGB Dragon and Stanford Bunny models, both

scenes that exhibit even and regular triangulation. Any scene that contains large triangles

(such as might be found on a wall) like the Crytek Sponza Atrium, the Conference Room,

or even, sadistically, a single large scene-spanning triangle, the na1ve triangle-parallel ap-

proach has no mechanism by which to balance the workload, and the voxelization must

wait while individual threads work alone to voxelize large triangles.

9

Figure 3.3: Performance of a na1ve triangle-parallel voxelization, performance decreases

dramatically on scenes containing large polygons.

3.2 Fragment-parallel voxelization

This observation of poor work-balance in unevenly tessellated scenes is what led Schwarz

and Pantaleoni to introduce complex tile-assignment and sorting stages to their voxeliza-

tion pipelines. Our fragment-parallel voxelization is based on the observation that much

of our triangle-intersection routine can simply be moved to the fragment shader, provid-

ing the opportunity for vastly more parallelism. Thus we exploit the fragment stage of the

OpenGL pipeline as a sort of ad-hoc single-level of dynamic parallelism. There are sev-

eral implementation particulars required to ensure a gap-free voxelization, which will be

discussed in a later section. The performance results of our single-pass fragment-parallel

implementation can be observed in fgure 3.4, and most noteworthy is the fact that it

performs very well on the exact scenes that the triangle-parallel voxelization struggled

with, and most poorly on scenes with large amounts of fne detailed geometry (XYZ RGB

Dragon & Hairball).

The fragment-parallel implementation is far more unique and must be adapted to the

10

pipeline in order to produce a correct voxelization. At present, only Crassin and Green

[3] describe a similar approach. Our utilization of the fragment stage allows us to beneft

from the rasterization and interpolation acceleration provided by the graphics hardware.

However, there are several issues we must concern ourselves with when endeavoring to

produce a "gap-free" voxelization, (1) gaps within triangles caused by an overly oblique

"camera" angle, and (2) gaps between triangles caused by OpenGL's rasterization rules.
XY YZ ZX , dXY ,dYZ , dZXAs in the triangle-parallel approach values n, n ,n , n (for i = ei ei ei ei ei ei

0, 1, 2), dmin, and dmax are precomputed. However, in this implementation they are

calculated in the geometry shader, and passed as flat non-varying attributes to the

fragment shader. Essentially, we allow the rasterizer to take over for iterating over the

axes of the dominant planar projection, leaving the fragment shader to confrm overlap

with the dominant plane, calculate the depth intersection range according to the desired

separability rules, and confrm the remaining two planar projections. In the pseudocode

in fgures 6.1 and 6.2, the portion of code that would be moved into the fragment shaders

goes from line 15 to line 20 in fgure 6.1, and from 14 to line 20 in fgure 6.2.

11

Figure 3.4: Performance of fragment parallel voxelization. This exhibits poor-

performance in scenes with large numbers of small triangles. Performance degradation is

exacerbated as ratio of voxel-size to triangle-size increases.

12

O
rt

h
o

g
ra

p
h

ic
 C

am
er

a

Orthographic Camera Orthographic Camera

v0.xy

v1.xy v1.xy

v0.xy
v0.yx

v1.yx swizzled
geometry

perspective
change

Figure 3.5: Na1ve rasterization on input geometry can lead to gaps in the voxelization.

This can be solved in two ways, the center image demonstrates swizzling the vertices of

the input geometry, while the image on the right demonstrates changing the projection

matrix.

Gap-Free Triangles We can solve the frst problem, illustrated in fgure 3.5, in one

of two ways, both of which rely on determining the dominant normal direction of the

triangle. The frst approach relies on constructing an orthographic projection matrix

per-triangle, which views the triangle against the axis of its maximum projection as

determined by the dominant normal direction. Alternately, we can change the input

geometry, again based on the dominant normal direction, such that the XY plane is

always the axis of maximum projection. This can be accomplished by a simple hardware

supported vector swizzle described below ⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩

vi,yzx nx dominant
2

∀i=0vi,xyz = vi,zxy ny dominant

vi,xyz nz dominant

However, we must be sure to "unswizzle" when storing in the destination texture.

Additionally, a similar triangle swizzling approach can be used to reduce the number of

cases taken in the Schwarz and Seidel [14] approach. With triangle swizzling, the number

of cases drops from 9 to 3, one for each of the 1D, 2D, and 3D cases. Figure 3.6 depicts

the selection of the largest triangle projection based on the dominant normal direction.

13

x

y

z

z

y

x

y

x

z

|nx|

|nz|

x

y

z

|ny|

pre-swizzle post-swizzle

n

v2

v0

v1

v1

v0

v2

Figure 3.6: The largest component of the normal n of the original triangle determines the

plane of maximal projection (XY, YZ, or ZX) and the corresponding swizzle operation

to perform.

Conservative Rasterization The second problem can be solved with conservative

rasterization. Conservative rasterization ensures that every pixel that touches a triangle

is rasterized, which is counter to how the hardware rasterizer works. There are several

approaches to overcome this, which generally involve "dilating" the input triangle. Has-

selgren et al. [8] dilated input triangles by expanding triangle vertices into pixel sized

squares and computing the convex hull of the resultant geometry. Tessellation of this

shape can be computed in the geometry shader. Alternately, Hasselgren also proposed

computing the bounding triangle of the dilated geometry from the previous approach

and simply discarding in a fragment shader all fragments outside of the AABB. Hertel et

al. [9] proposed a similar approach, computing the dilated triangle T ' by constructing a

triangle of intersecting lines parallel to the sides of the original triangle T at a distance

of l, where l is half the length of the pixel diagonal, see fgure 3.7 for examples of these

techniques.

� �

14

v0̀

`v1

v2̀

v0̀

`v1

v2̀

v0
v1

v2

Figure 3.7: Various conservative rasterization techniques required in order to produce a

"gap-free" voxelization. The frst two images are from Hasselgren et al. [8], the leftmost

image show the approach of expanding triangles vertices to size of pixel, and tessellating

the resultant convex-hull, the middle image simply creates the minimal triangle to en-

compass the expanded vertices, and relies on clipping to occur later in the pipeline. The

rightmost approach is from Hertel et al. [9], and simply expands the triangle by half the

length of the pixel diagonal and also relies on clipping to remove unwanted pixels.

' With the Hertel approach the dilated vertices v of T ' can be easily computed as i

' ei−1 ei
vi = vi + l + .

ei−1 · nei ei · nei−1

In our case working on a 2D triangle projection in a premultiplied voxel space l will
√

always be 2/2.

It should be noted that conservative rasterization has the potential to produce unnec-

essary overhead in the form of fragment threads that are ultimately rejected in the fnal

voxelization intersection test. As triangles get smaller and l remains constant, the size
area(T)of the dilated triangle T ' to the size of the original triangle T causes the ratio area(T g) to

become smaller. This ratio can be used to approximate an upper bound on the expected

efciency of per-triangle fragment thread utilization. This goes part of the way to ex-

plaining the fragment-parallel technique's poor performance in highly tessellated scenes

with many small triangles, but is actually exacerbated further by poor quad utilization

15

¯Figure 3.8: Sub-voxel sized triangle exhibiting thread utilization of only 8.3% after tri-
angle dilation, note, that this can actually get much worse depending on the triangle
confguration.

for small triangles. Since texture derivatives require neighbor information, even if only

one pixel of a quad is covered, the entire quad is launched. This means that triangles

smaller than a voxel will utilize only 25% of the threads allocated to them before triangle

dilation is taken into account. After triangle dilation, thread utilization can be signif-

cantly worse, see fgure 3.8, and in scenes with millions of sub-voxel sized triangles, can

lead to massive oversubscription and poor performance

Additionally, it was our observation that voxelization methods that relied purely on

raster-based conservative voxelization methods tended to be overly conservative along

their edges where clipping against the AABB couldn't help them, resulting in false pos-

itives, see fgure 3.9. Since our approach maintains a computational intersection test

inside the fragment shader, these voxels are still culled.

16

Figure 3.9: Thin (6-separable) voxelization of the Conference Room scene illustrating

false positives (in red) resulting from a na1ve conservative-rasterization based voxeliza-

tion.

3.3 Hybrid Voxelization

Comparing the performance of both single-pass techniques side-by-side, as illustrated in

fgure 3.10, the inversion of strengths and weaknesses becomes even more apparent. By

using the fragment shader to increase the available parallelism, the worst-case scenario

for the triangle-parallel approach becomes the best case for the fragment-parallel case.

Conversely, the best-case for the fragment-parallel approach is the worst case for the

triangle-parallel approach. Thus, we logically arrive at a hybrid approach, one in which

large triangles are divided into fragment-threads using the fragment-parallel technique,

and small triangles are voxelized using the triangle-parallel technique, thus avoiding poor

thread utilization and oversubscription.

17

Figure 3.10: Comparison of the relative performance of Triangle-parallel and Fragment-
parallel techniques. Note, where one technique performs poorly, the other performs well.

18

Triangle Classification

Triangle-Parallel
Voxelization

small tris

large tris Fragment-Parallel
Voxelization

ln
p

u
t

T
ri

an
g

le
s

O
u

tp
u

t
V

o
xe

liz
at

io
n

Figure 3.11: A simple classifcation routine run before the voxelization stage allows create

a hybrid voxelization pipeline and utilize the optimal voxelization approach according to

per-triangle characteristics.

We take care to preserve coherent execution among our shader threads with the

introduction of a classifcation stage to our pipeline prior to voxelization, see fgure 3.11,

which outputs corresponding index bufers according each triangle's classifcation. These

classifed index bufers are then used to voxelize the corresponding geometry using the

appropriate technique.

Triangle Selection Heuristic The crux of the hybrid-voxelization approach lies in the

heuristic used for determining whether a triangle is most suitable for voxelization using a

triangle-parallel approach or a fragment-parallel approach. The Schwarz and Seidel [14]

approach is dependent on voxel extents of triangle bounding boxes, however, we have

already determined that the fragment-parallel approach will handle all large triangles,

and the triangle-parallel approach will handle all small triangles.

The heuristic for the selection of a cutof value can be approached in many diferent

ways, for instance, the size of the dilated triangle area (T ') most accurately represent the

number of potential voxel intersections to be evaluated in the fragment stage, but is not

a fair representation of the amount of work required in the triangle-parallel stage should

the triangle be classifed as small. Furthermore, the dilated triangle has a minimum size,

which must be considered as undilated triangles approach zero area. The 3D voxel-extents

provide a good indication of the amount of iteration required to voxelize a triangle in

the geometry stage, however, since the depth-range is calculated, the 2D-projected voxel-

19

Triangle Classification

Triangle-Parallel
Voxelization

small tris

large tris Fragment-Parallel
Voxelization

ln
p

u
t

T
ri

an
g

le
s

O
u

tp
u

t
V

o
xe

liz
at

io
n

Voxelization

Figure 3.12: Our fnal hybrid voxelization implementation mitigates the cost processing
the input geometry twice by immediately voxelizing input triangles classifed as "small"
and deferring only those triangles considered to be "large."

extents provide a closer representation of the actual work performed. Additionally, we
area(T)could consider the ratio of , which, as it varies from 0 to 1, indicates very small area(T g)

to very large triangles, respectively.

In our experiments, we found that simply considering the 2D projected area of the

triangle T worked best, and for most scenes an empirically derived triangle size of ap-

proximately 2 to 4 voxel units squared provided a good starting cutof value for triangle

classifcation. In fgure 3.13 we can see the full range of voxelization performance vary

from that of the fragment-parallel approach at a cutof of zero, to the performance of

the triangle-parallel approach once the cutof is large enough to encompass all triangles.

Note that fgure 3.13 represents an unreasonable range of cutof values; this is meant to

illustrate the performance characteristics as the cutof value changes. Generally, there is

a fairly large range of cutof values corresponding to near-optimal performance.

20

Figure 3.13: Initially at zero, all triangles are classifed as "large" and therefore voxelized

by the fragment-parallel shader. As the cutof value (measured in voxel area) increases

triangles are classifed and assigned to either the triangle-parallel or fragment-parallel

approaches. As the cutof continues to increase performance exhibits a stair-step pat-

tern as triangles are reclassifed. Eventually all triangles are classifed as "small" and

performance reverts to that of the triangle-parallel approach.

We are, however, most interested in the cutof value that will provide the minimal

voxelization time, and these values tend to occur at much lower values. Figure 3.14

shows only the earlier range of cutof values. Examination of the data confrms that for

most inputs a cutof value of just a few voxels squared provides for optimal voxelization

timing. It is conceivable that a bracketing search could determine and adjust this value

automatically [12].

21

Figure 3.14: Performance graph of the hybrid voxelization technique displaying a lower

range of cutof values such that the optimal cutof can be clearly discerned.

Optimization In order to avoid requiring separate output bufers for all input at-

tributes, we output only index bufers which are then used to render only the appropri-

ate subset of the geometry with the voxelization method as determined by the classi-

fer. On many scenes this allowed us to achieve improved performance over either the

fragment-parallel or the triangle-parallel approach alone. However, when we examine the

performance of a scene ideally suited to the triangle-parallel approach like the XYZ RGB

Dragon, we observe that the best performance that can be achieved with our triangle-

classifer is approximately twice that of the triangle-parallel approach alone. This can be

explained by the amount of work it takes to process the 7 million triangles in the scene.

Each triangle is extremely small (generally less than the size of a voxel) and takes rela-

tively little work to voxelize, and similarly little work to classify. In this case, run-time is

dominated by the overhead of creating threads, rather than the work done in each thread,

and with our current approach we have doubled the number of threads to be created.

Fortunately, we can exploit the fact that in our classifcation, we employ the triangle-

22

Figure 3.15: Full pipeline including shader stages. Note that while there are two "passes"
only a very small subset of the geometry, that is classifed as "large," is processed twice.

parallel approach only for small triangles. Combined with the fact that the number of

small triangles in a scene almost always dominates the number of large triangles, we can

dramatically decrease the overhead of our hybrid voxelization pipeline. As illustrated in

fgure 3.12, by moving the triangle-parallel voxelization into the classifcation shader and

deferring only the larger triangles to be voxelized by the fragment shader, we efectively

reduce a two-pass approach to a just slightly over one-pass approach, meaning, that while

all triangles are processed at least once, only a few are processed twice. Furthermore,

since the overhead of classifcation and voxelization of small triangles is so low, this makes

our hybrid approach competitive on all scenes, even those tailored for a triangle-parallel

approach. The full pipeline is shown in fgure 3.15, illustrating the voxelization of the

XYZ RGB Dragon scene.

3.. Voxel-List Construction

We explored two methods of Voxel-List construction, an important step in the construc-

tion of a sparse hierarchical structure such as an octree. A mipmap construction method

based on Ziegler et al.'s [17] HistoPyramid compaction techniques runs as a post-process,

generating a list of voxel locations, and could be extended to produce an entire octree.

Since it runs after the voxelization process, voxelization timing is not directly impacted,

23

but its cost can become signifcant as voxel resolution increases. Additionally, its mem-

ory requirements come with an additional 33% cost for mipmap allocation, and adding

additional attribute output bufers requires additional base level voxel textures.

Alternately, an atomic counter can be used to increment the index of output bufer

and written inline with the voxelization. Crassin and Green [3] used this technique

to generate a sparse "voxel-fragment-list" in which multiple elements may refer to the

same voxel location, which are later merged in hierarchy creation. To avoid duplicate

voxel assignments, unfortunately, requires a dense 3D r32ui texture. By employing an

imageAtomicCompSwap operation at the voxel location, we can restrict incrementing the

atomic counter to a single thread accessing the voxel location.

The use of atomic operations directly impacts voxelization performance, particularly

in situations where many threads are attempting to access the same voxel. We observed

that the additional voxel culling provided by a rigorous computational intersection test

helped signifcantly in reducing the number of write conficts for the atomics to resolve.

The inline atomic method also has the advantage of not requiring additional base level

textures for additional attribute outputs, however, on some architectures correct averag-

ing of attribute information (colors, normals, etc.) may require emulation of (as of yet)

unsupported atomic operations Crassin and Green [3].

3.5 Attribute Interpolation

Attribute interpolation must be handled manually in the triangle-parallel approach. But

as a beneft of its usage of the graphics pipeline, the fragment-parallel approach can

exploit the fxed-function interpolation hardware provided by the rasterizer. Since the

fragment-parallel voxelization method relies on triangle dilation to ensure a conservative

voxelization, care must be taken to correctly interpolate triangle attributes across the

dilated triangle. To accomplish this, we calculate the barycentric coordinates of the
' dilated triangle vertices vi with respect to the undilated triangle vertices vi using signed

area functions.

'
' area (vi, vi+1, vi+2)

λi vi =
area (v0, v1, v2)

' By applying the barycentric coordinates computed at the dilated triangle vertices vi

24

Figure 3.16: Voxelization of the Crytek Sponza Atrium scene with color attributes inter-
polated and stored per-voxel.

to the vertex attributes, i.e. vertex colors, normals, or texture coordinates ti, we can

calculate corresponding dilated attributes t ' i as follows

' ' ' ' t = λ0 v t0 + λ1 v t1 + λ2 v t2i i i i

By passing dilated attributes in from the geometry shader to the vertex shader in this

manner, we ensure that attributes interpolate across the undilated region of the dilated

triangle in the same manner as they would on the undilated triangle, this holds regardless

of the dilation factor l applied. An example this can be seen in fgure 3.16.

25

Chapter .: Results

We tested our hybrid voxelization approach against several diferent models at vari-

ous voxel resolutions, and compared the results to purely triangle-parallel and purely

fragment-parallel implementations, as well as the data available from Schwarz and Seidel

[14] and Pantaleoni [11]. We included the XYZ RGB Asian dragon as an example of a

pathological worst case-scenario for the fragment-parallel approach, and we included a

single scene-spanning triangle as a pathological worst case for the triangle-parallel ap-

proach. All results were generated on an Intel Core i7 950 @ 3.07GHz with an NVIDIA

GeForce GTX 480. Table 4.1 shows the performance comparison of the diferent tech-

niques. Note that the hybrid approach is able to either substantially improve upon or

provide comparable performance of the triangle and fragment-parallel approaches. Addi-

tionally the performance of our hybrid voxelization beats the performance of competing

techniques for which we have data. Despite its simple classifcation scheme, our approach

provides a performance improvement over both Schwarz and Seidel [14] and Pantaleoni

[11]. It should be noted that the cutof values are likely to be highly architecture de-

pendent, we would expect them to change when executed on Nvidia's Kepler or AMD's

Graphics Core Next. We would also point out, that comparing to the results present in

Crassin and Green [3], we achieve highly competitive results with inferior hardware.

26

Model Grid size
Triangle-parallel

6-separating (thin) voxelization
Fragment-parallel Hybrid @voxels2 Schwarz & Seidel VoxelPipe

large triangle
(1 tri)

1283

2563

5123

10.62
42.4
169.7

0.03 0.05 @2.0
0.06 0.07 @2.0
0.32 0.32 @2.0

XYZ RGB Asian
Dragon
(7,219,045 tris)

1283

2563

5123

6.37
7.70
9.55

165.2 8.54 @2.0 11.36
165.0 8.59 @2.0 14.73
164.6 10.19 @2.0 16.67

21.2

23.6

Crytek Sponza Atrium
(262,267 tris)

1283

2563

5123

13.4
53.2
208.7

10.65 1.07 @3.1
11.13 1.75 @3.5
11.87 3.84 @3.1

Stanford Bunny
(69,666 tris)

1283

2563

5123

0.28
0.82
3.12

1.58 0.19 @2.0 0.60
1.55 0.53 @2.5 0.89
1.82 1.91 @0.0 2.35

Conference
(331,179 tris)

1283

2563

5123

9.23
36.04
141.2

11.47 1.48 @2.0 3.9
11.62 1.73 @2.0
11.94 3.01 @2.0 59.3

3.3

8.5

Table 4.1: Running time (in ms) for diferent voxelization approaches, number in red
indicate pathological worst case scenarios for the corresponding method.

27

Chapter 5: Discussion

We implemented a wide variety of voxelization and conservative rasterization techniques

in our experiments. Our implementations targeted the capabilities described in the

OpenGL 4.2 specifcation. Our approach relied on the ability to perform texture writes

to arbitrary locations enabled by the image API. We found that by replacing transform

feedback bufers with atomic counters and image based bufer writes, we achieved perfor-

mance increases of up to 4x. Additionally, our classifcation approach relied on indirect

bufers to enable the asynchronous execution of the voxelization stage. A beneft of our

OpenGL implementation is that it avoids the performance penalty of context switch-

ing and implicit synchronization points present in a CUDA or OpenCL implementation.

With the introduction of OpenGL 4.3, the triangle-parallel approach could easily be im-

plemented in a Compute shader, but it remains to be seen if there is an advantage to

this.

Another application of our initial classifcation scheme, see fgure 3.11, could be to

"pre-classify" scenes. Then by maintaining two index-bufers, hybrid-voxelization could

be employed absent the cost of classifcation. Of course, this would only make sense when

applied to static geometry.

We found that several of our results agreed with Sintorn et al. [15] and Hertel et

al. [9], that geometry amplifcation of the frst Hasselgren technique led to performance

degradations. We also found that atomic operations more greatly impacted the triangle-

parallel approach, likely due to the fact that each triangle-parallel thread is responsible

for more writes than each fragment-parallel thread.

Future work could exploit true dynamic parallelism facilities currently only available

in CUDA 5 to spawn exactly one thread for each triangle/voxel pair. While this would

still obviate need for complex tiling and sorting strategies, it would unfortunately remove

the ability to exploit the remaining fxed-function hardware present on the GPU exposed

to the graphics pipeline.

28

Chapter 6: Conclusion

This paper has shown how a GPU-accelerated computational surface voxelization can

be achieved without resorting to CUDA or OpenCL. Our hybrid approach to voxeliza-

tion leverages the strengths of the graphics pipeline to improve parallelism where it is

most needed without sacrifcing the quality of the voxelization. Its simple classifcation

scheme deftly avoids the pitfalls of poor quad utilization and oversubscription present

in the fragment-parallel approach, while also avoiding the idle threads problem of the

triangle-parallel approach. It is relatively easier to implement on current gen hardware

using existing graphics APIs, and should prove to be highly suitable for next-gen console

systems. It exhibits superior performance to existing techniques, especially on scenes

with non-uniform triangle distributions.

29

Bibliography

[1] Tomas Akenine-Moller. Fast 3D Triangle-Box Overlap Testing Derivation and Op-
timization. pages 1�4, 2001.

[2] Daniel Cohen-Or. Fundamentals of surface voxelization. Graphical models and image
processing, pages 453�461, 1995.

[3] Cyril Crassin and Simon Green. CRC Press, Patrick Cozzi and Christophe Riccio,
2012.

[4] Z. Dong, Wei Chen, Hujun Bao, H. Zhang, and Qunsheng Peng.	 Real-time vox-
elization for complex polygonal models. In 12th Pacifc Conference on Computer
Graphics and Applications, 2004. PG 2004. Proceedings, pages 43�50, 2004.

[5] Elmar Eisemann and Xavier Decoret.	 Fast Scene Voxelization and Applications.
ACM SIGGRAPH, pages 71�78, 2006.

[6] Elmar Eisemann and Xavier Decoret. Single-pass GPU solid voxelization for real-
time applications. In Proceedings of graphics interface 2008, pages 73�80. Canadian
Information Processing Society, 2008.

[7] Shiaofen Fang and Hongsheng Chen. Hardware accelerated voxelization. Computers
and Graphics, 24, 2000.

[8] Jon Hasselgren, Tomas Akenine-Moller, and Lennart Ohlsson. Conservative Raster-
ization. In GPU Gems 2, pages 677�690. 2005.

[9] Stefan Hertel, Kai Hormann, and Rudiger Westermann.	 A hybrid gpu rendering
pipline for alias-free hard shadows. In Proceedings of Eurographics 2009 Area, 2009.

[10] Wei Li, Zhe Fan, Xiaoming Wei, and Arie Kaufman.	 GPU-based fow simulation
with complex boundaries. GPU Gems, 2:747764, 2005.

[11] Jacopo	 Pantaleoni. VoxelPipe : A Programmable Pipeline for 3D Voxelization
Blending-Based Rasterization. HPG, 2011.

[12] William H. Press, Saul A. Teukolsky,	 William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientifc Computing. Cambridge
University Press, New York, NY, USA, 3 edition, 2007.

30

[13] Michael Schwarz. Practical binary surface and solid voxelization with Direct3D
11. In Wolfgang Engel, editor, GPU Pro 3: Advanced Rendering Techniques, pages
337�352. A K Peters/CRC Press, Boca Raton, FL, USA, 2012.

[14] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid voxelization
on GPUs. ACM Transactions on Graphics, 29(6 (Proceedings of SIGGRAPH Asia
2010)):179:1�179:9, December 2010.

[15] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson. Sample based visibility for soft
shadows using alias-free shadow maps. Computer Graphics Forum {Proceedings of
the Eurographics Symposium on Rendering 2008}, 27(4):1285�1292, 2008.

[16] Long Zhang, Wei Chen, David S. Ebert, and Qunsheng Peng. Conservative voxeliza-
tion. Vis. Comput., 23(9):783�792, 2007.

[17] Gernot Ziegler, Art Tevs, Christian Theobalt, and Hans-Peter Seidel.	 On-the-fy
point clouds through histogram pyramids. In Leif Kobbelt, Torsten Kuhlen, Til
Aach, and Rudiger Westermann, editors, 11th International Fall Workshop on Vi
sion, Modeling and Visualization 2006 {VMV2006}, pages 137�144, Aachen, Ger-
many, 2006. European Association for Computer Graphics (Eurographics), Aka.

(�	

31

Appendix

We have provided pseudocode for both conservative, fgure 6.1, and thin, fgure 6.2,

voxelization routines in hopes of clarifying any confusion that might arise about their

implementation.

1: function conservativeVoxelize(v0, v1, v2, bmin, bmax, unswizzle)

2: ei ← v(i+1) mod 3 − vi

3:	 n ← cross (e0, e1)

XY T
4: nei
← sign (nz) · (−ei,y, ei,x)

YZ5:	 nei
← sign (nx) · (−ei,z, ei,y)

T

ZX
6: nei
← sign (ny) · (−ei,x, ei,z)

T) () ()
dXY XY	 XY XY7:	 ei

← − nei
, vi,xy + max 0, nei,x + max 0, nei ,y) () ()

dYZ YZ	 YZ YZ8:	 ei
← − nei

, vi,yz + max 0, nei,x + max 0, nei ,y) () ()
dZX ZX	 ZX ZX9:	 ei
← − nei

, vi,zx + max 0, nei,x + max 0, nei ,y

10:	 n ← sign (nz) · n II ensures zmin < zmax

11:	 dmin ← (n, v0) − max(0, nx) − max(0, ny)

12:	 dmax ← (n, v0) − min(0, nx) − min(0, ny)

13:	 for px ← bmin,x, . . . , bmax,x do

14: for py ← bmin,y, . . . , bmax,y do ())
XY + dXY15: if ∀2

i=0 nei
, pxy ei

≥ 0 then
116: zmin ← max bmin,z, (−(nxy, pxy) + dmin) nz(l)
117: zmax ← min bmax,z, (−(nxy, pxy) + dmax) nz

18: for pz ← zmin, . . . , zmax do ()))
YZ + dYZ ZX + dZX

i=0 ei ei ei ei19:	 if ∀2 n , pxy ≥ 0 ∧ n , pxy ≥ 0 then

20:	 V [unswizzle · p] ← true

21: end function

Figure 6.1: Pseudocode for a conservative (26-separable) computational voxelization, this

assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, while unswizzle

represents a permutation matrix used to get the unswizzled voxel location.

32

1: function thinVoxelize(v0, v1, v2, bmin, bmax, unswizzle)

2: ei ← v(i+1) mod 3 − vi

3: n ← cross (e0, e1)
XY4: nei
← sign (nz) · (−ei,y, ei,x)

T

YZ5:	 nei
← sign (nx) · (−ei,z, ei,y)

T

ZX ← sign (ny) · (−ei,x, ei,z)
T

+ 0.5 · max

n ← sign (nz) · n II ensures zmin < zmax

)))
6: nei)))

dXY XY
ei
← n XY XY nei,y

YZ

, 0.5 − vi,xy7: + 0.5 · max n ,
ei ei,x

YZdYZ YZ
ei
← n , 0.5 − vi,yz8: n n,

,

ei ei,x

ZX
ei,x

ei,y

ZX
ei,y

(((dZX ZX← nei
, 0.5 − vi,zx9: + 0.5 · max n nei

10:

11: dcen ← (n, v0) − 0.5 · nx − 0.5 · ny

12: for px ← bmin,x, . . . , bmax,x do

13: for py do← bmin,y, . . . , bmax,y()
XY n , pxyei

+ dXY ≥ 0ei

)
1
nz

∀2
i=014: if then

15: zint ← (−(nxy, pxy) + dcen)

)
16: zmin ← max (bmin,z, LzintJ)
17: zmax ← min (bmax,z, Izintl)

← zmin, . . . , zmax18: for pz do (
V [unswizzle · p] ← true

)
+ dZX

ei
≥ 0

)
then∀2

i=0
YZ + dYZ ZX≥ 0 ∧	 nei

19:	 if n , pxyei
, pxyei

20:

21: end function

Figure 6.2: Pseudocode for a thin (6-separable) computational voxelization, this assumes

that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled, while unswizzle represents

a permutation matrix used to get the unswizzled voxel location.

